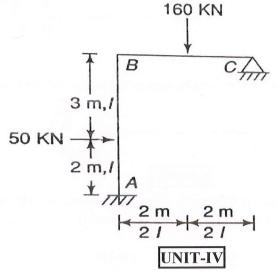


4 Using flexibility matrix method for the beam shown below and draw shear force and L3 12M bending moment diagrams, EI is Constant.

Q.P. Code: 20CE1001



UNIT-III

Analyse the rigid jointed plane frame shown below by flexibility matrix method. EI L3 **12M** 5 is constant throughout.

Analyze the frame shown below by force method. 6

7	Solve the following system of equations using Gauss elimination method.	L3	12M
	-4x+y+10z=21		
	5x - y + z = 14		
	4x + 6y + 7z = 12		
	OR		
8	Determine the solution by using Gauss elimination method.	L3	12M
	2x1 - 2x2 + 4x3 = -3		
	2x1 + 3x2 + 2x3 = 5		
	-x1 + x2 - x3 = 1		
	UNIT-V		
9	Write about nonlinear structural behavior.	L2	12M
	OR		
10	Derive the equation of geometrical stiffness for beam elements.	L2	12M

10 Derive the equation of geometrical stiffness for beam elements. L2

*** END ***

Page 2 of 2

L3 **12M**